

TD The Journal for Transdisciplinary Research in Southern Africa, 7(1) July 2011, pp. 25-40.

Thinking processes used by high-performing students in a computer

programming task

M HAVENGA,1 R DE VILLIERS2 AND E MENTZ3

Abstract

Computer programmers must be able to understand programming source code and write
programs that execute complex tasks to solve real-world problems. This article is a trans-
disciplinary study at the intersection of computer programming, education and
psychology. It outlines the role of mental processes in the process of programming and
indicates how successful thinking processes can support computer science students in
writing correct and well-defined programs. A mixed methods approach was used to
better understand the thinking activities and programming processes of participating
students. Data collection involved both computer programs and students’ reflective
thinking processes recorded in their journals. This enabled analysis of psychological
dimensions of participants’ thinking processes and their problem-solving activities as they
considered a programming problem. Findings indicate that the cognitive, reflective and
psychological processes used by high-performing programmers contributed to their
success in solving a complex programming problem. Based on the thinking processes of
high performers, we propose a model of integrated thinking processes, which can support
computer programming students.
Keywords: Computer programming, education, mixed methods research, thinking
processes.
Disciplines: Computer programming, education, psychology.

1. Introduction
The research described in this article lies at the intersection of computer programming, education and
psychology. It is an inter-disciplinary study that investigates how the thinking processes and
strategies used by high-performing student programmers foster the development of correct computer
programs.
The primary aim of a computer programmer is to write correct, high quality computer programs that
solve real-world problems effectively and efficiently. A computer program is a human artefact
comprising language-specific rules, formulated in the so-called source code of a particular
programming language. This coded language communicates functionality that the computer
hardware can ‘understand’. By ‘syntax’ of a program, we refer to expressions, statements and program
units, whereas ‘semantics’ refer to the meaning of those expressions, statements and program units
(Sebesta, 2008). Syntax and semantics are closely related, and the specific way in which programming

1 . Faculty of Education Sciences, North-West University, Private Bag X6001, Potchefstroom, +27
18 299 4281, marietjie.havenga@nwu.ac.za
2 . School of Computing, University of South Africa, P O Box 392, Unisa, 0003, South Africa, +27 12 429 2 . School of Computing, University of South Africa, P O Box 392, Unisa, 0003, South Africa, +27 12 429
6559, Dvillmr@unisa.ac.za.
3 . Faculty of Education Sciences, North-West University, Private Bag X6001, Potchefstroom, +27
18 299 4281, elsa.mentz@nwu.ac.za +27 18 299 4238(f).

Havenga, De Villiers & Mentz

26

statements, expressions and constructs are organised and combined, reflects the meaning and purpose
of a program. A programmer’s approach, knowledge and thinking shapes the structure, logic, and
flow of the program. Student programmers undergo the process of learning detailed programming
knowledge and skills. Some are particularly competent in applying a variety of skills, forms of
knowledge, and thinking processes in their programming. In order to understand the mental
activities and strategies of such students, we investigated their approaches to a particular programming
task, along with their underlying thoughts and reasoning, documented during the programming
process. In previous papers we discussed the differences between successful and unsuccessful
programming students (Havenga, Mentz & De Villiers, 2008) and suggested how average
programming students could improve on their performance (Havenga, De Villiers & Mentz, 2010).
These publications came from different perspectives, while the aim of the present research was
specifically to determine in what ways the thinking processes used by highly competent student
programmers, support their programming performance. The research question addressed in this
study was:

How can the specific thinking processes used by high-performing computer science students,
support them in writing correct and well-defined programs?

To answer this, we overview relevant literature in Section 2, and set out the research design and
methodology in Section 3. Sections 4 and 5 describe the respective qualitative and quantitative
methods used, while Section 6 consolidates the results and presents a diagrammatic representation of
integrated thinking processes in the context of programming. Section 7 briefly concludes the study.

2. Literature overview
This paper describes an integration of the domains of computer programming, psychology and
education by inter-relating the thinking processes of computer science students with the actual
outcomes of their computer programming tasks. To this end, we address relevant literature on, first,
the role of the human mind in the activities required in the programming process and, second, the
particular forms of knowledge and regulatory mental strategies applied while undertaking
programming.

2.1 Involvement of the human mind in programming

Programmers must be able to understand the syntax and semantics of source code, and write programs
that execute complex tasks to solve the problem in hand. The way in which this is done, is based on
the programmer’s underlying thinking and decision-making processes. Various mental activities are
involved in solving programming problems. According to Parnin (2010), the memory used to
program syntax, is retained by means of abstracted perceptual patterns or visual sketches. An example
of this is the use of indented and highlighted text to display the iterative patterns of a ‘for’ loop
construct, which is a programming mechanism used to repeat a statement or set of statements. The
semantic meanings of programming statements are retained by using auto-associative support from the
hippocampal formation (Parnin, 2010). The hippocampus in the brain is involved in the encoding
and retrieval of memory processes (Chen, Chuah, Sim & Chee, 2010).
Working memory refers to the temporary storage and maintenance of information required in various
types of cognitive and complex tasks (Klingberg, 2010; Unsworth, Redick, Heitz, Broadway & Engle,
2009). Working memory is involved in high-level thinking processes such as comprehension,
reasoning, problem solving and the use of language (Unsworth et al., 2009). It integrates acoustic and
visual information, organises it meaningfully, and links new information to existing knowledge in
long-term memory (Sternberg, 2006). However, in order to complete complex tasks successfully,
information must be actively maintained in working memory. Effective teaching of mental strategies
and extended training might support maintenance of working memory by improving its capacity,
resulting in associated change in brain activity in various sections (Klingberg, 2010).

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

27

2.2 Knowledge and strategies used in the programming process

Programmers need to maintain and recall different types of knowledge as they proceed through the
process of computer programming. In order to write programs that execute effectively and that
produce correct output, declarative, procedural and metacognitive knowledge are required (Ismail,
Ngah & Umar, 2010). Declarative knowledge is the knowledge of facts that can be stated (Sternberg,
2006), for example, knowledge of the syntax of the ‘for’ construct mentioned in the previous section.
Procedural knowledge refers to the implementation of knowledge, that is, knowing how and when to
conduct certain processes or activities (Gunter, Estes & Mintz, 2010), such as the execution of a
particular segment of programming code. Metacognitive knowledge relates to an individual’s explicit
knowledge about his/her own cognitive learning processes, strengths and weaknesses (Gravill,
Compeau & Marcolin, 2002; Gunter et al., 2010), for example, knowledge regarding how to use
particular strategies in the process of solving programming problems. The effective use of all three
forms of knowledge, namely: declarative, procedural and metacognitive knowledge, directs a
programmer’s mental processes and can enhance the use of the associated cognitive, metacognitive
and problem-solving skills and strategies, which are addressed in the next paragraphs.
In order to apply assimilated knowledge effectively, various supportive strategies and activities can be
used. Cognitive activities refer to the mental processes used in the acquisition, storage, transformation
and application of appropriate content knowledge (Sternberg, 2006). The relative complexity of the
content can be managed cognitively by using different types of knowledge in different ways. Various
schemes exist to represent such dimensions. Some schemes are taxonomical, while others emphasise
varying categories (Webb, 2002). We used the classic Bloom’s Taxonomy, which has been applied in
Computer Science Education (Börstler & Schulte, 2005), to analyse the different types of knowledge
used and applied by programming students. This taxonomy presents six levels of cognitive activities:
knowledge, comprehension, application, analysis, synthesis and evaluation (Bloom, Krathwohl &
Masia, 1973).
Gravill et al. (2002) indicate that metacognitive activities play a critical role in successful
programming. Metacognitive strategies include planning, monitoring and self-regulation that affect
reflection and memory performance (Bergin, Reilly, & Traynor, 2005; Flavell, 1979). The use or
non-use of these practical activities, impacts both on the programming process and the resulting
product. Furthermore, programmers use different types of problem-solving activities when initially
considering a programming problem, examples being the top-down, bottom-up and integrated
strategies. The top-down approach addresses the ‘big picture’ and subsequently decomposes it into
smaller subproblems (Storey, 2006). By contrast, when using the bottom-up strategy, programmers
focus initially on details of the individual parts that are combined into higher-level abstractions
(Storey, 2006). The integrated strategy combines top-down and bottom-up strategies in different
levels of abstraction.
In their interactive learning model, Tennyson and Nielsen (1998) expound the relationship between
the cognitive and affective domains with regard to interaction of content knowledge and cognitive
strategies for higher-order thinking processes such as problem solving, creativity, decision making and
trouble shooting.
The concepts mentioned in this section are examples of knowledge, skills and strategies that might
support students in computer programming. In the sections following, we describe empirical research
relating to high-performing students who implemented such mental activities while undertaking a
programming task.

3. Research paradigm and methodology
3.1 Research approach

The research described in this paper employs a mixed approach (Creswell, 2008; Creswell, 2009),
whereby qualitative and quantitative methods, associated with interpretivism and postpositivism

Havenga, De Villiers & Mentz

28

respectively, are applied in tandem. We used both interpretivist and postpositivist approaches, so as
to holistically analyse programming students’ interpretations of the problem, as well as to grade their
programming performance (Havenga, 2008) and to determine why some students succeed.
The interpretivist paradigm relates to knowledge and deep insight that are intentionally obtained by
the interpretation of constructs through the lived experience of human beings (De Villiers, 2005;
Klein & Myers, 1999). This approach uses mainly qualitative methods that rely on non-statistical
techniques of data collection and analysis. We applied grounded theory (Glaser & Strauss, 1967;
Strauss & Corbin, 1998; Creswell, 2008) as a method (Matavire & Brown, 2008) to focus on the
psychological dimensions of the students’ thinking processes and problem-solving activities as they
considered a programming problem.
Postpositivism is a quantitative-based approach that involves quantitative and, on occasions,
qualitative methods (Onwuegbuzie, Johnson & Collins, 2009). Based on postpositivism, we assigned
quantitative scores to defined criteria, including measurement of some qualitative aspects, based on
the use of the grounded theory method (GTM). As indicated in Section 3.2, the participants in this
study were the high-performing students from two cohorts of programming students.
Figure 1 shows a diagram of a mixed methods approach, in which a variety of processes are applied.
In the general context, these include data collection and analysis, structural organisation of qualitative
data, and the systematic investigation of quantitative data. In the specific context of the present study,
it comprises firstly the collection and analysis of students’ recorded thinking processes and their
programs; the organisation and categorisation of qualitative data; the identification of themes and
patterns that emerge and the subsequent generation of theory. These processes are displayed in an
upward progression in the left quadrilateral of Figure 1. The generation of theory is an abstract,
inductive process (Creswell, 2008; Gibbs, 2010), progressing from detailed thinking processes and
programs to general themes and the induction of a theory—hence the vertical broadening of the
quadrilateral towards its culmination at the top.
Secondly, we analysed empirical data by using quantitative methods such as descriptive and inferential
statistics. The upward broadening of the quadrilateral on the right indicates the generalisation of
results. Finally the two sets of results were integrated for interpretation as shown at the top of Figure
1.

Figure 1: Application of a mixed methods approach

The rationale for integrating qualitative and quantitative methods in this research is to emphasise
completeness or the “notion that the researcher can bring together a more comprehensive account of

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

29

the area of enquiry” (Bryman, 2006, p. 106). It implies that qualitative and quantitative methods, as
separated instruments, do not completely explain why some programmers are successful.

3.2 Participants and the programming problem

Participants
The participants in the overarching research venture, which was conducted over a period of two years,
were third-year, exit-level students taking Computer Science or Information Technology as a major
subject. The participants (n=48) came from two cohorts; the first cohort consisted of 11 BEd and 17
BSc third-year students and the second cohort comprised three BEd and 17 BSc third-year students.
The group of participants was not a sample; it was the population of students doing computer
programming as part of their degree studies. Participation was entirely voluntary and all students
completed informed consent forms. The present study focuses not on the performance of the full set
of 48 participants, but on 11 high performers, so-called ‘successful programmers’, as explained in
Section 5.1.

Programming problem
The programming problem involved designing and writing a computer program to perform complex
calculations with dates, as well as a test program to check the output of the ‘date’ program. The
students had two weeks to complete the programming task, as it was not part of their class
assignments. An initial task framework, in the form of an open-ended programming question, was
given to guide the data collection process. At the very least, participants were expected to write a
computer program called Date class to determine which years are leap years and to calculate the
difference in days between any two dates in the range 1 January 1800 to any later date up till the
present. They were also required to write a second program called Test class to determine whether the
output of the Date class was correct. These programs could be written in either the Delphi or Java
programming language, both of which are object-oriented languages.
During the process of interpreting the question and writing these object-oriented programs (OOP),
participants had to reflect on their experiences of programming and write descriptive textual
documents to record their associated thinking and problem-solving processes. This reflective
journaling exercise provided descriptive data to be analysed by qualitative processes. To ensure
uniformity in the structure and content of the text documents, the task description gave precise
instructions as to what aspects should be covered and how they should be set out (Havenga, 2008).
Data collection therefore involved both the computer programs and the written thinking processes

4. Qualitative data collection and analysis
4.1 Collection and analysis processes

The grounded theory method was applied to analyse students’ thinking processes recorded in their
journals. GTM involves a sequence of actions such as coding; theoretical sampling and constant
comparative analysis; defining and refining properties and categories; and identifying their relevant
contexts. In this way, recursive collection and analysis of data proceed towards the identification of
themes and the generation of theory regarding participants’ thinking processes. The cyclic left and
right open arrows in the qualitative section of Figure 1 represent this recursive process.
Atlas.ti (Muhr, 2004) was selected as a powerful software knowledge workbench, to optimise the
coding and analysis processes. Within Atlas.ti the textual information from each individual’s thinking
processes was assigned to a primary document. All primary documents were integrated into a single
hermeneutic unit. Specific codes were awarded to selected sections of text in each primary document,
to represent explicit ideas or meanings. Saturation of data did not occur until near the very end. The
codes in the hermeneutic unit were organised into possible groups of related codes or coded ‘families’.

Havenga, De Villiers & Mentz

30

Three months later, further analyses were repeated on the same data, to refine the coded families and
to increase trustworthiness of the emergent themes and patterns.

4.2 Qualitative findings and the development of a grounded theory

Themes that emerged from the data
As part of the inductive generation of emergent theory, the following five themes emerged,
representing characteristics of the students’ programming processes:

• Use of cognitive knowledge, skills and strategies;
• Use of metacognitive thinking processes;
• Application of problem-solving strategies;
• Handling of errors and problems that occurred in the development of the computer programs;

and
• Additional forms of support used.

With regard to the first three, the strategies concerned were used to a greater or lesser extent by
different participants. This study, however, investigates the performances of the most successful
students, so as to determine whether successful thought processes and reflection support students in
similarly attaining success in their programming activities. The formal definition of a ‘successful
programmer’ is related to quantitative scores and is given in Section 5.1 on quantitative data analysis.
We now provide examples of occurrences of the five themes as indicated in the journaling of the
successful programmers.
Clear evidence of cognitive activities emerged from analysis of the data of these high-performing
students. A list follows of quotations from their textual thinking processes, linked to associated levels
of Bloom’s taxonomy (in parentheses). [P29] refers to Participant 29, etc.

I begin with the class and constructor [P15] (Knowledge);

I determined the days of each month [P12] (Comprehension);

I think about the screen layout [P29] (Application);

Determine the difference between two dates [P42] (Analysis);

Subtract 1800 from [the] date and also determine leap years [P38] (Synthesis);

The program is now working 100% [P40] (Evaluation).

Knowledge is required about the class construct [P15] and comprehension skills are used to determine
the number of days in a relevant month [P12]. The examples above illustrate that the participants
who are quoted, recalled facts and interpreted the programming problem. P29 used application skills
when he considered, and later designed, a user-friendly interactive screen layout to determine leap
years, and when he decided on the associated input and output. Whilst analysing the programming
problem, decisions should be made about the time range of a given set of two dates [P42]. In writing
a computer program, there are usually several different ways to operationalise the requirements.
During synthesis, therefore, participants applied appropriate formulae, then used a variety of
programming constructs and code syntax to write the program, for example, methods to determine
the leap years [P38]. Evaluation should be used to determine whether the complete program works,
as did P40, who self-reviewed, noting that he made the necessary changes and that his program
executed correctly thereafter.
The use of metacognitive activities was clearly evident in most participants’ thinking processes. Prior
knowledge acquired from previous programming tasks can ease planning for a new task. P29 asked

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

31

many rhetorical questions to support his comprehension of the new task, while P32 monitored and
reflected on his own thinking in the context of a complex task. P23 continuously self-questioned and
reviewed his approach as he considered the general cases in his program:

What are the specifications? [P29] (Planning);

Create a framework for the Date class and Test class [P32] (Planning);

I ask myself frequently what are the general cases in each situation? [P23] (Monitoring);

This method is difficult and I should provide for many exceptions, especially for leap years [P32]
(Monitoring, Regulation).

The type of problem-solving strategies used by participants in the early stages of programming also
emerged as a major factor impacting on success in the final program. In most cases, participants did
not state explicitly which strategy they had used; however, they recorded the steps they used during
the problem-solving process and the strategy could be inferred. It is notable that different high
performers used different strategies. For example, P48 used a bottom-up strategy, while P32
indicated use of a top-down strategy:

I create the class and declare methods [P48] (Bottom-up strategy);

I will start with the … Date class and Test class, headings, import given methods, etc. [P32]

(Top-down strategy).

The theme, Handling of errors and problems, refers to problems and complexities that participants
encountered in the development of their programs. The spontaneous comments below (which were
not of a type specifically requested in the specification for the thinking-processes document) made it
clear that the nature and extent of errors, as well as approaches to solving them, were crucial elements.
Participants interpreted their problems and learned from their mistakes:

My ‘if’-structure is incorrect [P48];

I should make many exceptions for problems [P32].

The Additional support theme unveiled the fact that successful students used a variety of sources and
supplementary forms of support—textbooks, completed assignments; and the Internet—in their
efforts to design programs, to write programming code, and to solve their problems independently.

I have used previous Java assignments [P44];

I used a textbook [P32];

I used Wikipedia and previous assignments [P29].

An integrated theory of the themes that emerged
The development of a grounded theory is based on the conceptual clarity that occurs as it becomes
increasingly possible to identify emergent patterns and theory. Figure 2 presents a final thematic
pattern that was constructed from overall analysis of the participants’ programs and thinking
processes. This diagram can be considered as an integrated representation of the mental concepts and
activities that contribute to the process of successful computer programming. Certain themes relate to
the core activities involved in programming and can be viewed as the foundation of the structure,
namely the use of cognitive knowledge, skills and strategies; metacognitive thinking processes; and problem-
solving expertise. The other two themes that emerged, namely, Handling of errors and problems, and
Additional forms of support, are shown as scaffolding on the side.
The propositions in Figure 2, namely, ‘address’ and ‘facilitate’, represent relationships that occur as
scaffolding supports the programming process. These propositions indicate that the high-performing
participants were able to solve their problems independently, using reflection and additional sources of
information to support their efforts.

Havenga, De Villiers & Mentz

32

Cognitive knowledge, skills and strategie
 Metacognitive thinking processes
 Problem-solving expertise

 Programming process

 address facilitate

 Handling of Additional forms
errors and problems of support

 serve as foundations

Figure 2: An integrated theory of the themes that emerged

from high-performing participants’ thinking processes

4.3 Examples of students’ mental activities during programming

Various examples of human thought, knowledge, recall and reflection are shown in Table 1, which
maps concepts from the literature of Sections 2.1 and 2.2, against mental activities of the participants.
These incidences of mental activity emerged from textual data in the students’ journals, which was
transferred by the primary researcher to coded primary documents as described in Section 4.1. They
illustrate ways in which the high performers recalled relevant factors and reasoned about the problem.
The activities supported them in planning, managing and regulating their actions and enabled them
to successfully design and implement their computer programs

Table 1: The mental activities of successful students during programming

Concepts from literature
study: Human mind in
programming

Mental activities of participants:
Examples from journals and programs

Patterns or visual sketches
(syntax)
(Parnin, 2010).

Programming syntax: if (YearLeap == true)

 Days = 29;

 else

 Days = 28;

 [P32].
Semantic meaning of
statements
(Parnin, 2010).

[Days of] The 1st, 3rd, 5th, 7th, 8th, 10th and 12th month should be smaller than 32. The
2nd month should be smaller than 29 (except for leap years) else it [days in each month]
should be smaller than 31 [P48].

Reasoning

(Sternberg, 2006).

i. Test the year. Determine if it is a leap year (February).

ii. Then test the months. Use arrays.

iii. Now test the days.

If all the above are positive then the value is true [it is a leap year] [P32]. Decision-making (Simon,
1955; Sternberg, 2006). I think about the screen layout [P29].

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

33

Concepts from literature
study: Human mind in
programming

Mental activities of participants:
Examples from journals and programs

Recall, memory and
forgetting
(Chen et al., 2010; Unsworth
et al., 2009).

…when I realised that I should use a nested ‘if’ statement [to test for leap years], it was
very easy [P32].

I cannot believe that I forgot how to create a [programming] class. I quickly
looked in my textbook and recalled the knowledge [P48].

Attention and
comprehension (Sternberg,
2006)

I read the question with attention and get an overview of what was been asked [P42].

Declarative knowledge
(Ismail et al., 2010).

The input format [for dates] is : yyyymmdd [P23].

I have written two methods: one to determine leap years and the other to
determine the difference between two dates [P15].

Procedural knowledge and
problem solving (Ismail et
al., 2010).

You require a method to copy from the date [yyyymmdd] the day, month and year…I
therefore require three methods: one for getDay, getMonth en getYear respectively [P23].

Metacognitive knowledge
(Ismail et al., 2010).

I read the question carefully and determined what was being asked? [P29].

Finally my program is working. It was a challenge. I should do it more
regularly [P48].

5. Quantitative analysis
Both descriptive and inferential statistics were used.

5.1 Quantitative data analysis

The right side of Figure 1 in Section 3.1 displays the systematic investigation by which standard
statistical measurements were applied during quantitative data analysis. As explained in Section 3.1,
the postpositivist approach can on occasions involve both quantitative and qualitative data. We
assigned scores to quantitative aspects, by rating participants’ performance in the programming task in
the same way we would mark (score) it for a semester mark. Similarly, the thinking processes of
students, as established by the GTM analysis of Section 4.2, were analysed according to measurement
criteria generated from a theoretical literature study (Havenga, 2008; Section 2.2). Table 2 shows the
quantitative data, classified under four conceptual categories of criteria with 24 more specific
subcriteria. Twenty-three of the criteria (left column in Table 2) were measured on a 4-point scale,
where 1 indicates poor performance and 4 an excellent performance. For the problem-solving
category, with a single criterion, a score out of 8 was allocated. The 24 criteria thus score a total of
100. To be classified as ‘successful’ in programming, participants had to obtain 3 or 4 for the
‘Correctness of output’ subcategory (3rd last row in Table 2), demonstrating accurate program output
and appropriate test data to test the program. Using this requirement, there were 11 successful and 37
unsuccessful programmers among the 48 participants (Havenga et al., 2008). The data of the former
11 was used in this study.

5.2 Findings from the quantitative analysis

Descriptive statistics
The scores were analysed by descriptive statistics to determine the means and standard deviations of
the scores of high performers for all subcategories and for the overall categories as shown in Table 2.

Havenga, De Villiers & Mentz

34

Table 2: Means and standard deviations of successful programmers’ results

Category Participant number

12 15 23 28 29 32 38 40 42 44 48

x

Cognition x =3.85 s=0.20

Knowledge 4 4 4 4 4 4 4 4 4 4 4 4.00

Comprehension 4 4 4 4 4 4 4 4 4 4 4 4.00

Application 4 4 4 4 4 4 4 4 4 4 4 4.00

Analysis 4 3 4 4 4 4 4 4 4 4 3 3.82

Synthesis 4 3 4 4 4 4 4 3 4 4 3 3.73

Evaluation 4 3 3 4 4 4 3 3 4 4 3 3.55

Metacognition x =3.33 s=0.54

Planning 4 4 4 4 4 4 4 4 3 4 4 3.91

Monitoring 4 3 4 4 4 4 2 3 2 3 3 3.27

Regulation 4 2 3 3 3 4 2 2 2 3 3 2.82

Problem solving 8 8 8 8 8 8 8 8 8 8 8 8.00

OOP activities x =3.62 s=0.29

Program requirements analysis 4 4 4 4 4 4 4 4 4 4 4 4.00

Programming techniques 4 4 4 4 4 4 4 4 4 4 4 4.00

Programming statements 4 4 4 4 4 4 4 4 4 4 3 3.91

User-friendliness 3 3 2 3 4 4 3 2 2 4 3 3.00

Classes and objects 4 3 4 4 4 4 4 4 4 4 3 3.82

Method application 4 3 4 4 4 4 3 3 4 4 3 3.64

Access control 4 4 4 4 3 4 4 4 4 4 4 3.91

Parameter passing 4 4 4 4 4 4 4 4 4 4 4 4.00

Reasoning and logic 4 3 4 4 4 4 4 3 4 4 3 3.73

Exception handling 3 0 3 3 3 4 2 1 3 4 2 2.55

Program structure and scope 3 3 4 4 4 4 4 4 4 4 3 3.73

Solution of problem 4 3 4 4 4 4 4 3 4 4 3 3.73

Program evaluation 3 3 4 4 4 4 4 3 3 4 3 3.55

Correctness of output 3 3 3 3 4 4 3 3 3 3 3 3.18

TOTAL (%) 95 82 94 96 97 100 90 85 90 97 84 91.82

*Problem-solving strategy BU

TD

IG

BU

IG

TD

BU

BU

BU

BU

BU

*BU = Bottom-up; TD = top-down; IG = Integrated strategy.

The table shows that in the problem-solving category, with its single row, all the high-performing
participants obtained the maximum score of 8. For cognition, metacognition and OOP activities,

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

35

they obtained more than 3 on a 4-point scale across the board, except for the ‘regulation’ and
‘exception handling’ subcategories, where a few defaulted, particularly in the latter where some
imperfect performances occurred.

Correlation
Furthermore, we investigated statistical correlations between cognition, metacognition and OOP
constructs respectively to determine the relationship between scores assigned to the qualitative mental
activities of computer science students and scores in their programming tasks. The Spearman
correlations between these pairs of variables are shown in Table 3.

Table 3: Correlations between cognition, metacognition and OOP knowledge and skills of successful

participants

Construct

r

Cognition
OOP knowledge and skills

0.80*

Metacognition
OOP knowledge and skills

0.55*

Practically significant (Steyn, 2002).
The cognition/OOP correlation is considerably larger than 0.5 namely 0.80. The
metacognition/OOP correlation is 0.55. However, both are relevant in practice (Ellis & Steyn, 2003),
indicating a highly significant relationship between the mental construct of cognition and the OOP
programming construct, and a significant relationship between the mental construct of metacognition
and the programming construct of OOP.

6. Discussion
6.1 Overview of the findings

Analyses of the qualitative and quantitative data revealed that high-performing computer science
students employed various thinking processes to support their computer programming performance
(Section 4, Tables 1 and 2). With regard to their expertise in programming, these students
demonstrated high levels of knowledge with regard to the object-oriented programming approach and
constructs of the programming language (declarative knowledge). They were skilled in using syntax
and semantics, and knew how and when to apply the input, output and calculations involved in the
program (procedural knowledge).
The application of various strategies enhanced their programming performances. The high performers
effectively used cognitive, metacognitive and problem-solving skills and strategies to direct their
thinking processes (Figure 2). They applied all the levels of Bloom’s taxonomy and organised their
thinking processes to address the programming problem (cognitive strategies). Metacognition was
demonstrated by journal entries that indicated reflection on the tasks, and explained their actions and
decisions on the use of specific programming statements. They employed self-management and self-
evaluation strategies. Results indicate that the high-performing students regulated their thinking
processes more effectively than the other students.

Havenga, De Villiers & Mentz

36

Furthermore, the successful programmers used various processes emanating from psychology, such as
attention; comprehension; step-wise reasoning; problem-solving; decision-making; memory strategies;
and recall techniques (Table 1), to express themselves in semantically correct programming code and
thus to enhance their programming performance. Table 1 also gives an example of the use of visual
patterns to facilitate correct syntax. The high performers were able to reflect on their errors and
handle them with appropriate trouble-shooting and recovery techniques. In addition, they fostered
their programming prowess by independently consulting supplementary media and forms of support.
As indicated in Table 2, these participants obtained the maximum score of 8 for problem-solving
strategies and none of them used the trial-and-error approach. Most of the successful participants (7)
used a bottom-up problem-solving strategy, two used top-down and two applied the integrated
strategy (last row of Table 2). Successful participants applied various programming skills and gave
evidence of correct output and appropriate test data. The relationships between the constructs show
that cognitive and metacognitive thinking processes impacted on programming performance (Table
3). In particular, the positive correlation between cognition and OOP (r = 0.80) allows us to predict
that these two variables are related. The relationship between metacognition and OOP is r = 0.55,
indicating that the application of metacognitive processes and reflection can support problem solving
in object-oriented programming.

6.2 Research question revisited

This study addressed the research question:
How can the specific thinking processes used by high-performing computer science students,
support them in writing correct and well-defined programs?

It is clear from the findings that the high-performers explicitly applied a variety of thinking processes
and strategies, which helped them, produce correct and well-defined programs. A concise summary
follows:

• Mental activities during the programming process were directed by declarative-, procedural-
and metacognitive knowledge and skills;

• Strategy formulation and execution enabled participants to plan a high-level strategy on how
to approach and solve the problem;

• The use of analysis, synthesis and evaluation skills enabled participants to decompose the
problem into manageable sections; to determine solution strategies for each; and to elaborate,
organise and integrate their programming statements in ways that solved the problem
successfully;

• Planning, monitoring, and self-regulation strategies supported independent reviewing, self-
evaluation, diagnosis and error handling—for both logic errors and programming errors;

• Supplementary forms of support were consulted; and
• A range of psychological modalities and activities enabled participants to represent, design,

code and execute correct and well-defined OOP programs (modalities refer to form and to
the use of visual and spatial senses, which play an important role in representing and
designing programs).

This study with its focus area of thinking processes in the application area of Computer Science
Education, has made a contribution in the realm of inter-disciplinary studies. We inter-related
psychological dimensions — in the form of students’ reflective thinking processes — with the actual
outcomes of computer programming tasks. The high-performing participants orchestrated their
thinking processes in a comprehensive way and demonstrated a uniformity in performance, yet with
variations in techniques. The study has provided new insights regarding the efforts lying behind a
complete operational computer program.

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

37

6.3 Integrated thinking processes model for learning programming

Figure 3 presents a model based on the findings of this study. Anti-clockwise, its three components
are educational activities, programming performance and psychological processes—from the three
disciplines respectively. The representation integrates the thinking processes, knowledge, skills,
mental activities and strategies used by high-performing student programmers as they undertake a
complex programming task.

Figure 3: An integrated thinking processes model for learning programming.

The outer arrows represent interactions between the three components. The inner dotted arrows,
converging on the shaded intersection, emphasise the dynamic integration of processes and activities
that support high performance in learning object-oriented programming.
The explicit use of supportive skills and strategies, over and above content knowledge can facilitate
learning to program, as shown at the right vertex of the model. Klingberg (2010) points out that
extensive teaching of strategies leads to the improved performance of working memory tasks (Section
2.1 and 2.2). In a previous paper, we (Havenga et al., 2010) described how the successful use of
supportive knowledge and activities can be ‘actionable’ in practice, and gave examples. In their
interactive learning model, Tennyson and Nielsen (1998) (Section 2.2) suggest that the interaction of
content knowledge with cognitive strategies can be learned. Furthermore, a sound knowledge of
problem-solving processes for both well- and ill-structured programming problems should form a
foundation for writing programs that execute correctly. Finally, programmers must be able to self-

Havenga, De Villiers & Mentz

38

evaluate the accuracy and correctness of their programs to demonstrate how ‘well’ they have solved the
problem.
The psychological processes and modalities at the left vertex should support and direct programmers’
thinking as they understand, represent, design, code and test a program to solve a real-world problem.
The process of computer programming involves various mental activities and qualities. For example
selective attention is closely linked to working memory performance (Klingberg, 2010).
When writing programs, programmers need to think on a high level of abstraction. Many student
programmers have a reasonable grasp of syntax, but struggle to holistically combine code to produce a
program that executes correctly. Programming, positioned at the top vertex — with specific reference
in this study to object-oriented programming — requires structured thinking on the part of the
programmer to organise and sequence the segments of programming code within the program units,
or so-called ‘classes’. Sound detailed specification of the overall program and design activities
supports the organisation of such classes. Logical and rigorous thinking is required to direct the
integration of programming statements into so-called ‘methods’ that specify the required behaviour of
the ‘objects’ in the program. The employment of supportive learning techniques and psychological
activities assists the programmer in writing correct and well-defined computer programs.

7. Conclusion
This trans-disciplinary study investigated an integration of the domains of computer programming,
education and psychology. Psychological dimensions of Computer Science students—in the form of
the reflective thinking processes of high-performing programmers during the programming process—
were related to the actual outcomes of their computer programs. Findings indicated that high-
performing programmers used a range of mental activities and supportive strategies, applying various
cognitive, reflective and psychological processes and activities. They employed sound thinking
processes and orchestrated their activities in a comprehensive way, which contributed to successful
completion of their programming tasks. Based on the findings, we propose a model of integrated
thinking processes to support problem solving in complex tasks.
This study provides insights regarding the multi-disciplinary efforts underlying a complete computer
program that executes correctly. The questions arise: Can learning strategies and higher-order
thinking skills be taught and learned? Is there a place in education for the explicit teaching of
supportive skills and cognitive strategies, over and above content instruction? Future research should
focus on teaching practices that incorporate such strategies to facilitate learning to program.

8. References

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the Role of Self-Regulated Learning on
Introductory Programming Performance. International Computing Education Research (ICER),
81-86.

Bloom, B.S., Krathwohl, D.R., & Masia, B.B. (1973). Taxonomy of Educational Objectives. Book2:
Affective Domain. London: Longman Group.

Börstler, J. & Schulte, C. (2005). Teaching Object Oriented Modelling with CRC-cards and Role
playing Games. Proceedings of 8th IFIP World Conference on Computers in Education (WCCE)
2005, Cape Town, South Africa, 4-7 July 2005.

Bryman, A. (2006). Integrating quantitative and qualitative research: how is it done? Qualitative
Research, 6, 97-113.

Thinking processes used by high-performing students

 TD, 6(1), July 2011, pp. 25-40.

39

Chen, K.H.M., Chuah, L.Y.M., Sim, S.K.Y., & Chee, M.W.L. (2010). Hippocampal region-specific
contributions to memory performance in normal elderly. Brain and Cognition, 72, 400-407.

Creswell, J.W. (2008). Educational Research. Planning, Conducting, and Evaluating Quantitative and
Qualitative Research (3rd ed.). New Jersey: Pearson Education.

Creswell, J.W. (2009). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (3rd
ed.). SAGE Publications Inc. Thousand Oaks, CA.

De Villiers, M.R. (2005). Interpretive research models for Informatics: action research, grounded
theory, and the family of design- and development research. Alternation, 12(2), 10-52.

Ellis, S.M. & Steyn, H.S. (2003). Practical significance (effect sizes) versus or in combination with
statistical significance (p-values). Management Dynamics, 12(4), 51-53.

Flavell, J.H. (1979). Metacognition and Cognitive Monitoring. A New Area of Cognitive
Developmental Inquiry. American Psychologist, 34(10), 906-911.

Gibbs, G.R. (2010). Analyzing Qualitative Data. Los Angeles: SAGE Publications.
Glaser, B.G. & Strauss, A.L. (1967). The Discovery of Grounded Theory. Strategies for Qualitative

Research. London: Weidenfeld and Nicolson.
Gravill, J.I., Compeau, D.R., & Marcolin, B.L. (2002). Metacognition and IT: The influence of Self-

Efficacy and Self-Awareness. Eighth Americas Conference on Information Systems. 2002: 1055-
1064.

Gunter, M.A., Estes, T.H., & Mintz, S.L. (2010). Instruction. A Models Approach. (5th ed.). Boston:
Pearson.

Havenga, H.M. (2008). An investigation of students’ knowledge, skills and strategies during problem
solving in object-oriented programming (PhD Thesis: Unisa).

Havenga, M., Mentz, E., & De Villiers, R. (2008). Knowledge, skills and strategies for successful
object-oriented programming: a proposed learning repertoire. South African Computer Journal
(SACJ), 42,1-8.

Havenga, H.M., De Villiers, M.R., & Mentz, E. (2010). Enhancing the thinking processes of
computer programming students who are average performers. In Proceedings of the 1st
International Conference on Mathematics, Science and Technology Education (ISTE) 2010: 64-78.
Mopani Camp, Kruger National Park. October 2010.

Ismail, M.N., Ngah, N.A., & Umar, I.N. (2010). Instructional Strategy in the Teaching of Computer
Programming: A need assessment analysis. The Turkish Online Journal of Educational
Technology, 9(2), 125-131.

Klein, H.K. & Myers, M.D. (1999). A set of principles for conducting and evaluating interpretive
field studies in Information Systems. MIS Quarterly, 23(1), 67-94.

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14,
317-324.

Matavire, R. & Brown, I. (2008). Investigating the Use of “Grounded Theory” in Information
Systems Research. In Riding the Wave of Technology, Proceedings of South African Institute for
Computer Scientists and Information Technologists (SAICSIT) 2008: 139-147. ACM
International Conference Proceedings Series. George, October 2008.

Muhr, T. (2004). User’s Manual for ATLAS.ti 5.0. (2nd ed.). Retrieved 3 September, 2010, from
http://www.atlasti.com/downloads/atlman.pdf

Havenga, De Villiers & Mentz

40

Onwuegbuzie, A.J., Johnson, R.B., & Collins, K.M.T. (2009). Call for mixed analysis: A
philosophical framework for combining qualitative and quantitative approaches. International
Journal of Multiple Research Approaches, 3, 114-139.

Parnin, C. (2010). A Cognitive Neuroscience Perspective on Memory for Programming Tasks.
Retrieved 27 October, 2010, from http://www.cc.gatech.edu/~vector/papers/memory.pdf

Sebesta, R.W. (2008). Concepts of Programming Languages. (8th ed.). Boston: Pearson Addison
Wesley.

Simon, H.A. (1955). A Behavioral Model of Rational Choice. The Quaterly Journal of Economics,
69(1), 99-118.

Sternberg, R.J. (2006). Cognitive Psychology (4th ed.). United Kingdom: Thomson Wadsworth.
Steyn, H.S. (2002). Practically significant relationships between two variables. SA Journal of Industrial

Psychology, 28(3), 10-15.
Storey, M.A. (2006). Theories, tools and research methods in program comprehension: past, present

and future. Software Quality Journal, 14, 187-208.
Strauss, A. & Corbin, J. (1998). Basics of Qualitative Research: Techniques and Procedures for

Developing Grounded theory (2nd ed.). Sage Publications, Thousand Oaks: CA.
Tennyson, R.D. & Nielsen, M. (1998). Complexity Theory: Inclusion of the Affective Domain in an

Interactive Learning Model for Instructional Design. Educational Technology, 38(6), 7-12.
Unsworth, N., Redick, T.S., Heitz, R.P., Broadway, J.M., & Engle, R.W. (2009). Complex working

memory span tasks in higher-order cognition: A latent-variable analysis of the relationship
between processing and storage. Memory, 17(6), 635-654.

Webb, N.L. (2002). Alignment study in language arts, mathematics, science, and social studies of
state standards and assessments for four states. Washington, DC: Council of Chief State
School Officers.

